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Figure 1: Given a geometric model of a mechanical assembly, we analyze it to infer how the individual parts move and interact with each
other. The relations and motion parameters are encoded as a time-varying interaction graph. Once the driver is indicated by the user, we
compute the motion of the assembly and use it to generate an annotated illustration to depict how the assembly works. We also produce a
corresponding causal chain sequence to help the viewer better mentally animate the motion.

Abstract
How things work visualizations use a variety of visual techniques to
depict the operation of complex mechanical assemblies. We present
an automated approach for generating such visualizations. Starting
with a 3D CAD model of an assembly, we first infer the motions of
individual parts and the interactions between parts based on their
geometry and a few user specified constraints. We then use this
information to generate visualizations that incorporate motion ar-
rows, frame sequences and animation to convey the causal chain
of motions and mechanical interactions between parts. We present
results for a wide variety of assemblies.

Keywords: mechanical assembly, motion depiction, visualization,
shape analysis, causal chaining

1 Introduction
. . . all machines that use mechanical parts are built with the
same single aim: to ensure that exactly the right amount of
force produces just the right amount of movement precisely
where it is needed.

(David Macaulay, The New Way Things Work [1998])

Mechanical assemblies are collections of interconnected parts such
as gears, cams and levers that move in conjunction to achieve a
specific functional goal. As Macaulay points out, attaining this goal
usually requires the assembly to transform a driving force into

movement. For example, the gearbox in a car is a collection of
interlocking gears with different ratios that transforms rotational
force from the engine into the appropriate revolution speed for
the wheels. Understanding how the parts interact to transform the
driving force into motion is often the key to understanding how
mechanical assemblies work.

There are two types of information that are crucial for understand-
ing this transformation process: 1) the spatial configuration of parts
within the assembly and 2) the causal chain of motions and mechan-
ical interactions between parts. While most technical illustrations
effectively convey spatial relationships, only a much smaller subset
of these visualizations are designed to emphasize how parts move
and interact with one another. Analyzing this subset of how things
work illustrations and prior cognitive psychology research on how
people understand mechanical motions suggests several visual tech-
niques for conveying the movement and interactions of parts within
a mechanical assembly:

Motion arrows indicate how individual parts move.

Frame sequences show key snapshots of complex motions and
highlight the sequence of interactions along the causal chain.

(a) Gears with motion arrows (b) Cam frame sequence
Image credits: David Macaulay, The New Way Things Work [1998] 

Figure 2: Hand designed illustrations. These examples show how
motion arrows (a) and sequences of frames (b) can help convey
the motion and interactions of parts within mechanical assemblies.
c© Houghton Mifflin Company.
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Animations are sometimes used to show the dynamic behavior of
an assembly.

Creating effective how things work illustrations and animations by
hand is difficult because a designer must understand how a com-
plex assembly works and also have the skill to apply the appropri-
ate visual techniques for emphasizing the motions and interactions
between parts. As a result, well-designed illustrations and anima-
tions are relatively uncommon, and the few examples that do exist
(e.g., in popular educational books and learning aids for mechanical
engineers) are infrequently updated or revised. Furthermore, most
illustrations are static and thus do not allow the viewer to inspect an
assembly from multiple viewpoints.

In this paper, we present an automated approach for generating how
things work visualizations of mechanical assemblies from 3D CAD
models. Our approach facilitates the creation of static illustrations
and animations from any user-specified viewpoint. We address two
main challenges:

Motion and interaction analysis. Most 3D models do not spec-
ify how their parts move or interact with each other. Yet, this in-
formation is essential for creating visualizations that convey how
the assembly works. We present a semi-automatic technique that
determines the motions of parts and their causal relationships based
on their geometry. With a small amount of user assistance, our ap-
proach can successfully analyze a wide range of CAD models.

Automatic visualization. We present algorithms that use the mo-
tion and interaction information from our analysis to automatically
generate a variety of how things work visualizations, including
static illustrations with motion arrows, frame sequences that high-
light key snapshots and the causal chain of mechanical interactions,
as well as simple animations of the assembly in motion. Figure 1
shows examples of static illustrations generated automatically using
our system. Figure 2 shows similar hand-designed illustrations that
incorporate motion arrows and frame sequences.

The contributions of our work include 1) a set of design guidelines
for generating motion arrows and frame sequences that effectively
convey the causal chain of motions and mechanical interactions
between parts, 2) an analysis technique that extracts the relevant
motion and interaction information from an input 3D model, and 3)
automated visualization algorithms that apply our design guidelines
based on the results of the analysis.

2 Related Work

Our work builds on three main areas of related work.

Illustrating Motion. Depicting motion in a still image is a chal-
lenging task that requires mapping changes in time to locations in
image space. Illustrators and artists use a variety of cues to de-
pict motion, including sequences of key poses, stroboscopic effects,
motion blur, affine shear (or forward lean), action lines, and ar-
rows [McCloud 1993; Cutting 2002]. Researchers have developed
algorithms for adding such motion cues to computer-generated an-
imations of 2D and 3D geometric scenes [Masuch et al. 1999;
Kawagishi et al. 2003; Nienhaus and Döllner 2005], time-varying
volumetric data [Joshi and Rheingans 2005], video [Collomosse
et al. 2005; Kim and Essa 2005; Dony et al. 2005; Goldman et al.
2006] and skeletal motion capture data [Assa et al. 2005; Bouvier-
Zappa et al. 2007]. All these techniques assume that the input data
directly contains some representation of the motions that must be
visualized. For example, Nienhaus and Döllner [2005] illustrate
the motion of 3D animations, based on an analysis of specialized
scene graphs that encode the structure and motion of the animated
scene. Similarly the techniques designed to illustrate volumetric

data, video and motion capture, assume that the data itself is time-
varying. A key feature of our approach is that it does not require
such a representation of the motion as part of the input. Instead we
analyze a purely geometric representation of a mechanical assem-
bly to extract the relevant kinematic motions of its parts.

Researchers have also developed a variety of techniques for inter-
preting and animating 2D sketches of complex physical systems,
including mechanical devices, analog circuits, chemical structures.
See Davis [2007] for a survey of these techniques.

Shape Analysis. Early research efforts at Felix Klein’s celebrated
Erlanger Program [1893] and later by Thompson [1917] established
the importance of geometry to the study of form and structure. The
ideal goal is to extract high level shape semantics and relations be-
tween the various parts of shapes by working with their geometric
descriptions alone. For general shapes, this remains a difficult, and
often an unrealistic task.

However, significant progress has been made in the case of engi-
neered objects. Such objects are designed and manufactured us-
ing well established processes and often share distinctive prop-
erties. Researchers in the CAD/CAM community have long ex-
plored such characteristics to facilitate reconstruction, segmenta-
tion and denoising of shapes for reverse engineering [Benkö et al.
2001; Demarsin et al. 2007]. In addition, man-made objects are
well suited for a variety of shape analysis techniques including
slippage-analysis [Gelfand and Guibas 2004], symmetry detec-
tion [Mitra et al. 2006], up-right positioning [Fu et al. 2008], ab-
straction [Mehra et al. 2009], and structural feasibility [Whiting
et al. 2009]. Recently, Xu et al. [2009] employed slippage analysis
to segment and categorize joints in man-made models, and used
the information for interactive volumetric-cell-based space defor-
mation. Concurrently, Gal et al. [2009] demonstrated that working
with a set of 1D feature curves extracted from engineered objects,
and preserving their intra- and inter-relations while deforming the
shapes lead to an intuitive manipulation framework. This research
suggests that some of the characteristic properties of man-made
shapes may be closely related to their geometry. In this work, we
make use of recent advances in geometric shape analysis to infer
relevant attributes of individual parts and their mutual relations for
typical mechanical assemblies. We propose a light weight shape
analysis system that uses a small set of assumptions and user spec-
ifications to automatically infer the motion of such assemblies.

Mechanical Animation. Although most CAD models do not in-
clude information about how their parts move and interact, a few
commercial CAD packages provide tools that help users create me-
chanical animations in order to evaluate functional aspects of an
assembly design (e.g., SolidWorks Motion, Solid Edge Motion Sim-
ulation). However, most of these tools still require the user to man-
ually specify information for all (or many) of the assembly parts,
including motion parameters and interaction constraints between
the parts. In contrast, our approach infers such information directly
from geometry with far less user assistance. Furthermore, even after
motion parameters have been specified, existing CAD tools do not
automatically produce the types of how things work visualizations
that are the focus of our work.

3 Designing How Things Work Visualizations

Illustrators and engineers have produced a variety of
books [Amerongen 1967; Macaulay 1998; Langone 1999; Brain
2001] and websites (e.g. howstuffworks.com) that are designed
to show how complex mechanical assemblies work. These illus-
trations use a number of diagrammatic conventions to highlight
the motions and mechanical interactions of parts in the assembly.
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Cognitive psychologists have studied how static and multimedia
visualizations help people mentally represent and understand the
function of mechanical assemblies [Mayer 2001]. For example,
Narayanan and Hegarty [1998; 2002] propose a cognitive model
for comprehension of mechanical assemblies from diagrammatic
visualizations that involves 1) constructing a spatial representation
of the assembly and then 2) constructing a model of the causal
chain of motions and interactions between the parts. They also
suggest a set of high-level design guidelines for creating how
things work visualizations that facilitate these two steps.

Researchers in computer graphics have concentrated on refining
and implementing many of the design guidelines aimed at assisting
the first step of the comprehension process. Algorithms for creat-
ing exploded views [McGuffin et al. 2003; Bruckner and Groller
2006; Li et al. 2008], cutaways [Seligmann and Feiner 1991; Li
et al. 2007; Burns and Finkelstein 2008] and ghosted views [Feiner
and Seligmann 1992; Viola et al. 2004] of complex objects apply
illustrative conventions to emphasize the spatial locations of the
parts with respect to one another. Since our focus in this work is
on depicting motions and mechanical interactions between parts,
we concentrate the following discussion on visual techniques that
facilitate the second step of the comprehension process.

Helping Viewers Construct the Causal Chain

In an influential treatise examining how people predict the behavior
of mechanical assemblies from static visualizations, Hegarty [1992]
found that people reason in a step-by-step manner, starting from
an initial driver part and tracing forward through each subsequent
part along a causal chain of interactions. At each step, people infer
how the relevant parts move with respect to one another and then
determine the subsequent action(s) in the causal chain. Even though
all parts may be moving at once in real-world operation of the as-
sembly, people mentally animate the motions of parts one at a time
in causal order.

Although animation might seem like a natural approach for visu-
alizing mechanical motions, in a meta-analysis of previous studies
comparing animations to informationally equivalent sequences of
static visualizations, Tversky et al. [2002] found no benefit for an-
imation. Our work does not seek to engage in this debate between
static versus animated illustrations. Instead we aim to support both
types of visualizations with our tools. We consider both static and
animated visualizations in our analysis of design guidelines.

Effective how things work illustrations use a number of visual tech-
niques to help viewers mentally animate an assembly.

Use arrows to indicate motions of parts. Many illustrations in-
clude arrows that indicate how each part in the assembly moves.
In addition to conveying the motion of individual parts, such ar-
rows can also help viewers understand the specific functional rela-
tionships between parts [Hegarty 2000; Heiser and Tversky 2006].
Placing the arrows near contact points between parts that interact
along the causal chain can help viewers better understand the causal
relationships.

Highlight causal chain step-by-step. In both static and animated
illustrations, highlighting each step in the causal chain of actions
helps viewers mentally animate the assembly by explicitly indicat-
ing the sequence of interactions between parts. Static illustrations
often depict the causal chain using a sequence of key frames that
correspond to the sequence of steps in the chain. Each key frame
highlights the transfer of movement between a set of touching parts,
typically by rendering those parts in a different style from the rest of
the assembly. In the context of animated visualizations researchers
have shown that adding signaling cues that sequentially highlight

rack-pinionvariable speed gear helical gear

axlecam crank belt lever

worm gearbevel gear

Figure 3: Typical joints and gear configurations encountered in
mechanical assemblies, and handled in our system. While most
types we can automatically detect and handle, we require the user
to mark some parts, for example a lever (see accompanying video).

the steps of the causal chain improve comprehension compared to
animations that do not include such cues [Hegarty et al. 2003; Kriz
and Hegarty 2007].

Highlight important key frames of motions. The motions of
most parts in mechanical assemblies are periodic. However, in some
of these motions, the angular or linear velocity of a part may change
during a single period. For example, the pistons in the assembly
shown in Figure 12 move up and down the cylinder during a single
period of motion. To depict such complex motions, static illustra-
tions sometimes include key frames that show the configuration of
parts at the critical instances in time when the angular or linear ve-
locity of a part changes. Inserting one additional key frame between
each pair of critical instances can help clarify how the parts move
from one critical instance to the next.

4 System Overview

We present an automated system for generating how things work
visualizations that incorporate the visual techniques described in
the previous section. The input to our system is a polygonal model
of a mechanical assembly that has been partitioned into individual
parts. Our system deletes hanging edges and vertices as necessary to
make each part 2-manifold. We assume that touching parts are mod-
eled correctly, with no self-intersections beyond a small tolerance.
As a first step, we perform an automated motion and interaction
analysis of the model geometry to determine the relevant motion
parameters of each part, as well as the causal chain of interactions
between parts. This step requires the user to specify the driver part
for the assembly and the direction in which the driver moves. Using
the results of the analysis, our system allows users to generate a
variety of static and animated visualizations of the input assembly
from any viewpoint. The next two sections present our analysis and
visualization algorithms in detail.

5 Motion and Interaction Analysis

The analysis phase computes the type of each part and how the parts
move and interact with each other within the assembly. We encode
this information as an interaction graph (see Figure 4) in which
nodes represent parts, and edges represent mechanical interactions
between touching parts. Each node stores parameters that define the
type (e.g. axle, gear, rack, etc.) and motion attributes (e.g., axis of
rotation or translation, range of possible motion) of the correspond-
ing part. We use shape and symmetry information to infer both the
part type and part motion directly from the 3D model. Each edge in
the graph is also typed to indicate the kind of mechanical interaction
between the relevant parts. Our system handles all of the common
joint and gear configurations shown in Figure 3, including cam and
crank mechanisms, axles, belts, and a variety of gear interactions.

Illustrating How Mechanical Assemblies Work       •       58:3
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analyzed assembly parts interaction graph

Figure 4: (Left) Parts of an assembly with automatically detected
axes of rotation or symmetry, and (right) the corresponding inter-
action graph. Graph edges encode the types of joints.

To construct the interaction graph, we rely on two high-level in-
sights: 1) the motions of many mechanical parts are related to their
geometric properties, including self-similarity, symmetry; 2) the
different types of joint and gear configurations are often charac-
terized by the specific spatial relationships and geometric attributes
of the relevant parts. Based on these insights, we propose a two-
stage process for constructing the interaction graph. First, in the
part analysis stage, we examine each part and compute a set of can-
didate rotation and translation axes based on the self-similarity and
symmetry of the part. We also compute key geometric attributes, in-
cluding radius, type of side profile (cylindrical, conical), pitch, teeth
count, as applicable. Complex parts are segmented into simpler sub-
parts, each with its associated radius, side profile type, etc. Then, in
the interaction analysis stage, we analyze the axes and attributes
of each pair of touching parts and classify the type of joint or gear
configuration between those parts. Based on this classification, we
create the interaction graph nodes, store any relevant motion param-
eters, and link touching parts with the appropriate type of edge.

5.1 Part Analysis

For each part, we estimate its (potential) axes, along with attributes
like side profile, radius, teeth count, and pitch as applicable. Based
on these attributes we classify the type of the part. In Section 5.2,
we explain how we use these attributes to determine how motion is
transmitted across parts in contact with one another. In this interac-
tion analysis phase we also use the motion information to refine our
classification of the part type.

Assumptions. Inferring inter-relations between parts and their
motion directly from the geometry of a static configuration of a
mechanical assembly can be ambiguous. However, making simple
assumptions about the assembly allows us to semi-automatically rig
up its motion. We assume that parts usually rotate about a symmetry
or dominant axis, translate along translational symmetry directions,
or engage in screw motion along a helical axis, as applicable. Un-
symmetric parts are assumed to remain fixed. Such parts typically
constitute the support structures of mechanical assemblies. Levers,
belts and chains have few dominating geometric characteristics.
Thus, we expect the user to identify such parts. Our system au-
tomatically identifies all the other part types shown in Figure 3.

Symmetry detection. Most machine parts are regularly struc-
tured and we use symmetry analysis to identify translational or
rotational axes of such parts as well as their degrees of freedom.
A part P is said to be symmetric if it remains invariant under some
transformation Tj, i.e., Tj(P) = P. For mechanical assemblies we
are only interested in the family of rigid transformations {Tj}, i.e.,
translations, rotations, and their combinations. We use a simplified
variant of Hough transform based voting scheme [Mitra et al. 2006]
to look for translational and rotational symmetries, while ignor-
ing reflective ones. The algorithm also handles partial symmetries,

segments

sharp edge loops

loop extraction

Figure 5: Parts are segmented using edges with high dihedral an-
gles across adjacent faces to form sharp edge loops.

which are present in certain parts like variable-speed gears (see Fig-
ure 3). For rotationally symmetric parts, we obtain their rotational
axis a and teeth count based on the order of their symmetry. Simi-
larly, for parts with discrete translational symmetry, we obtain their
movement direction t and teeth width, e.g., for a gear rack; while
for helical parts we compute the axis direction t along with the pitch
of the screw motion.

Sharp edge loops. Parts with insignificant symmetry often pro-
vide important constraints for the other parts, facilitating or restrict-
ing their movements. Even for (partially) symmetric parts we must
estimate attributes like gear radius, range of motion, etc. We extract
such properties by working with sharp edge loops or creases, that
are common 1D feature curves characterizing machine parts (see
also [Gal et al. 2009]).

We employ a simple strategy to extract sharp edge loops from
polygonal models of mechanical parts. First all the edges with dihe-
dral angle between adjacent faces exceeding threshold θs (40◦ in our
implementation), are marked as sharp. Then starting from a random
seed triangle as a segment, we greedily gather neighboring triangles
into the segment using a floodfill algorithm, while making sure not
to cross any sharp edge. We repeat this segmentation process until
all triangles have been partitioned into segments separated by sharp
edges. Segments with only few sharp edges (less than 10 in our
experiments) are discarded as insignificant. Boundary loops of the
remaining segments are used as sharp edge feature loops for the
remaining analysis (see Figure 5). Note that an edge can belong
to up to two loops. This simple loop extraction procedure is suffi-
cient to handle clean input geometry of mechanical parts with sharp
features like in CAD models. However, for parts with few sharp
edges, boundaries of proxy segments computed using variational
shape approximation can be used as feature loops [Cohen-Steiner
et al. 2004; Mehra et al. 2009].

Next we fit least squares (parts of) circles to the sharp edge loops
and based on the residual error we identify circular loops. For each
circle loop li, besides its center ci and radius ri, we also obtain its
(canonical) axis direction ai as the normal to its containing plane.

θ

ψ

x

y

Figure 6: (Left) Circles fitted to sharp edge feature loops of a part.
(Middle) The circles are first grouped based on their axes. Clusters
in this space denote parallel axes, which are in turn grouped based
on their (projected) centers. (Right) Detected axes are rated based
on the corresponding cluster size (denoted by axis thickness).
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interaction graph interaction graph

space-time surface

time

contact pro�lecontact pro�le

time

separatedseparated
in contactin contact

Figure 7: A time-varying interaction graph. (Top) Graph edges for the rack-and-pinion configuration are active at different times during
the motion cycle. (Bottom) We use a space-time construction to find the time interval for each edge. When the contact surfaces separate or
self-intersect, we identify end of a cycle. We show the space-time surface analysis for the top-left configuration.

For each part, all its estimated circle loops {li} are clustered to ex-
tract its potential axes of rotation. First we group loops {li} with
similar axis direction, i.e., we cluster the axes {ai} in the line space
parameterized by their altitude-azimuthal angles. For each detected
group, we further partition its elements based on the projection of
their centers in a direction along the cluster representative axis, cho-
sen as the centroid of the cluster in the line space. We use a radius
of 5 degrees for clustering axes.

This simple grouping scheme works well because mechanical mod-
els are largely designed from canonical geometrical primitives, and
have their underlying axes of the circle loops well aligned. We con-
sider the clustered directions to be potential axes of a part, if their
cluster sizes are significant. We rank the directions based on the
number of elements in their corresponding clusters (see Figure 6).
These axes directions, both for moving or static parts, often contain
important alignment cues for neighboring parts, e.g., as potential
shaft locations for axles.

Cylindrical or conical parts have similar rotational symmetry and
similar sharp edge loop clusters. To differentiate between them we
consider their (approximate) side profiles. We partition rotationally
symmetric parts into cap and side regions. Let ai denote the rota-
tional axis of part Pi. Each face t j ∈ Pi is classified as a cap face if its
normal n j is such that |n j · ai| ≈ 1, otherwise it is marked as a side
face. We then build connected components of faces with the same
labels, and discard components that have only few triangle faces

fitted circle

cap segment

side segmentradius

fitted cylinder

fitted cone

Figure 8: Sharp edge loops are fitted with circles, and regular loops
identified. The dominant part axis is used to partition the part into
cap- and side-regions, which are then tested for cylindrical or cone
fits for determining region types.

as members (see Figure 8). Finally, we fit least squares cylinders
and cones to the side regions, using the rotational axis and respec-
tive loop radius to initialize the non-linear fitting. Detected cylinder
or conical side profiles are later used to classify joint types, e.g.,
cylinder-on-plane, cone-on-cone (bevel), etc.

We obtain the remaining relevant part attributes from the sharp edge
loops. Their radii give us estimates for inner and outer radii of parts.
For parts with cylindrical, conical, or helical regions, we count the
intersection of the sharp edge loops with respect to their fitted cir-
cles to get the teeth count (see Figure 8). To rule out outlier parts
like rectangular bars, we consider rotationally symmetric parts to
be gears if they exhibit n-fold symmetry with n > 4.

Finally, for levers, chains and belts, which are essentially 1D struc-
tures, we use local principal component analysis to determine the
dominant direction for the part.

5.2 Interaction Analysis

To build the interaction graph and estimate its parameters, we pro-
ceed in three steps: we compute the topology of the interaction
graph based on the contact relationships between parts; we then
classify the type of interaction at each edge (i.e., the type of joint or
gear configuration); finally, we compute the motion of each part in
the assembly.

Contact detection. We use the contact relationships between
parts to determine the topology of the interaction graph. Follow-
ing the approach of Agrawala et al. [2003], we consider each pair
of parts in the assembly and compute the closest distance between
them. If this distance is less than a threshold α, we consider the
parts to be in contact, and we add an edge between their corre-
sponding nodes in the interaction graph. We set α to be 0.1% of the
diagonal of the assembly bounding box in our experiments.

As assemblies move, their contact relationships evolve. Edges ei j
in the interaction graph may appear or disappear over time. To
compute the evolution of the interaction graph we establish contact
relations using a space-time construction. Suppose at time t, two
parts Pi and Pj are in contact and we have identified their joint-
type (see later). Based on the joint-type we estimate their relative
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ACM Transactions on Graphics, Vol. 29, No. 4, Article 58, Publication date: July 2010.



driver driver

free

interaction graph

Figure 9: Planetary gear arrangement. The same arrangement of
mechanical parts can have largely different motion depending on
the chosen driver and the part constraints. The blue gear can be
free (left), or can be marked to be fixed (right).

motion parameters and compute their positions at subsequent times
t + ∆t, t + 2∆t, etc. We stack the surfaces in 4D using time as the
fourth dimension and connect corresponding points across adjacent
time slices.

Often, due to symmetry considerations, it is sufficient to work with
2D cross sectional curves of parts and construct the space-time sur-
face in 3D (see Figure 7). By extracting contact relations between
the space-time surfaces (as an instance of local shape matching), we
infer the time interval [t, t + n∆t] when the parts Pi and Pj remain
in contact, and hence the connection ei j survives. The same method
applies when the contact remains valid, but the junction parameters
change, e.g., variable speed gear (see Figure 3). In this case, the
space time surfaces become separated or start to intersect, as the
junction parameter changes. Afterwards, we look for new contacts
at the new event time, and continue building the graph. Note, we
implicitly assume that the junction part contacts and parameters
change discretely over the motion cycle allowing us to perform such
an event based estimation. Hence we cannot handle continuously
evolving junctions that may occur for parts like elliptic gears. As-
suming that the relative speeds between parts of an assembly are
reasonable, we used a fixed sampling ∆t = 0.1sec with the default
speed for the driver part set to angular velocity of .1 radian/sec, or
translational velocity of 0.1 unit/sec, as applicable.

Interaction classification. Having established the connectivity of
the graph, we now determine the relevant attributes for each edge
(i.e., we classify the corresponding junction and estimate the mo-
tion parameters for the relevant parts). We categorize a junction
between nodes P1 and P2 using their relative spatial arrangement
and the individual part attributes. Specifically, we classify junctions
based on the relation between the part axes a1 and a2, and then
check if the part attributes agree at the junctions. For parts with
multiple potential axes, we consider all pairs of axes.
Parallel axes: When the axes are nearly parallel, i.e., |a1 · a2| ≈ 1,
the junction can be cylinder-on-cylinder (e.g. yellow and green
gears in Figure 9), or cylinder-in-cylinder type (e.g. yellow and
blue gears in Figure 9). For the former r1 + r2 (roughly) equals
the distance between the axes, e.g., spur gears, helical gear; while
for the latter |r1 − r2| (roughly) equals the distance between the
axes, e.g., inner ring gears, (belong to) planetary gears. Note for
cylinder-on-cylinder, the cylinders can rotate about their individual
axes, while simultaneously one cylinder can rotate about the other
one, e.g., (subpart of) planetary configuration (see Figure 9).
Coaxial: As a special case of parallel axes, when both the axes are
also contained by a single line, the junction is marked coaxial. This
junction type is commonly encountered in wheels, cams, cranks,
axles, etc.
Orthogonal axes: When the axes are nearly orthogonal, i.e.,
a1 · a2 ≈ 0, the junction can be a cylinder-on-plane, cylinder-

on-line, rack-and-pinion, worm gear, bevel gear, helical gear. For
cylinder-on-plane, one part is cylindrical with radius matching the
distance between the cylinder axis and the plane. For cylinder-on-
line, e.g., belts, pulley ropes, the principal direction of the 1D part
is tangent to the cylinder. For a worm gear, one part is helical and
the other cylindrical. If both parts are conical with their cone angles
summing up to 90 degrees, we mark a bevel gear. When one part
exhibits rotational symmetry, and the other translational symmetry,
and their teeth width match, we flag a rack-and-pinion arrangement.

Our junction classification rules are carefully chosen and designed
based on standard mechanical assemblies and can successfully cat-
egorize most joints automatically, as found in our extensive exper-
imentation. However, our system also allows the user to intervene
and rectify misclassifications, as shown in the supplementary video.

Compute motion. Mechanical assemblies are brought to life by
an external force applied to a driver and propagated to other parts
according to junction types and part attributes. In our system, once
the user indicates the driver, motion is transferred to the other con-
nected parts through a breadth-first graph traversal of the interaction
graph G, starting with the driver-node as the root. We employ sim-
ple forward-kinematics to compute relative speed at any node based
on the joint type with its parent [Davidson and Hunt 2004]. For
example, for a cylinder-on-cylinder joint, if motion from a cylinder
with radius r1 and angular velocity ω1 is transmitted to another with
radius r2, then the imparted angular velocity ω2 is ω1r1/r2. Our
approach handles graphs with loops (e.g., planetary gears). Since
we assume our input models are consistent assemblies, even when
multiple paths exist between a root node and another node, the final
motion of the node does not depend on the graph traversal path.
When we have an additional constraint at a node, e.g., a node is
fixed or restricted to translate only along an axis, we perform a con-
strained optimization to find a solution. For example in Figure 9-
right, when the green part is the driver, and the blue part is fixed, the
intermediate nodes rotate both about their individual axes and also
about the green cylinder to satisfy constraints on both their edges.
Since we assume that the input assembly is a valid one and does not
self-penetrate during its motion cycle, we do not perform any col-
lision detection in our system. If the detected motion is wrong, the
user can intervene and correct misclassifications. Such intervention
was rarely needed for the large set of assemblies we tried.

6 Visualization

Using the computed interaction graph, our system automatically
generates how things work visualizations based on the design
guidelines discussed in Section 3. Here, we present algorithms for
computing arrows, highlighting both the causal chain and important
key frames of motion, and generating exploded views.

6.1 Computing Motion Arrows

For static illustrations, our system automatically computes arrows
from the user-specified viewpoint. We support three types of arrows
(see Figure 10): cap arrows, side arrows, and translational arrows.
Our algorithm for generating these arrows consists of three steps: 1)
determine how many arrows of each type to add, 2) compute initial
arrow placements, and 3) refine arrow placements to improve their
visibility.

For each (non-coaxial) edge in the interaction graph, based on the
junction type, we create two arrows, one associated with each node
connected by the graph edge. We refer to such arrows as contact-
based arrows, as they highlight contact relations. We add contact
arrows using the following rules:
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cylinder-on-cylinder joints: we add cap arrows on both parts;

cylinder-in-cylinder joints: we add a cap arrow for the part inside
and a side arrow for the one outside;

cylinder-on-plane joints: we add a cap arrow on the cylinder and a
translational arrow for the translational part;

bevel gears: we add side arrows on both (conical) parts;

worm-gear: we add a cap arrow on the cylinder and a side arrow
on the helical part.

Note that these rules do not add arrows for certain junction types
(e.g., coaxial joints). Thus, after applying the rules, we add a non-
contact arrow to any part that does not already have an associated
contact arrow. For example, we place a side arrow around a coaxial
joint. Furthermore, if a cylindrical part is long, a single arrow may
not be sufficient to effectively convey the movement of the part. In
this case we add an additional non-contact side arrow to the part.
Thus, a part may have multiple arrows assigned to it.

Having decided how many arrows to add and their part associa-
tions, we compute their initial positions as follows. During the part
analysis, we partitioned each part into cap and side segments (see
Section 5). Using the z-buffer, we identify the cap and side face
segments with the largest visible areas under self-occlusion and
also under occlusion due to other parts. These segments serve as
candidate locations for arrow placement; we place side arrows at
the middle of the side segment with maximal score (computed as
a combination of visibility and length of the side segment) and cap
arrows right above the cap segment with maximal visibility. For
contact-based side and cap arrows, we move the arrow within the
chosen segment as close as possible to the corresponding contact
point. Non-contact translational arrows are placed midway along
the translational axis with arrow heads facing the viewer. The local
coordinate frame of the arrows are determined based on the direc-
tional attributes of the corresponding parts, while the arrow widths
are set to a default value. The remaining parameters of the arrows
(d, r, θ in Figure 10) are derived in proportion to the part parameters
like its axis, radius, side/cap segment area. We position non-contact
side arrows such that the viewer sees the arrow head face-on.

Our initial arrow placement algorithm puts each arrow on a max-
imally visible cap or side segment. However, we can still improve
arrow visibility by optimizing arrow placement within each seg-
ment. For cap arrows, we allow freedom to increase or decrease the
radius for placement; while for side arrows we allow the freedom to
translate along and rotate about the part axis. Optimization proceeds
greedily, simultaneously exploring both directions, by taking small
steps proportional to respective arrow thickness. We terminate the
process when the arrow head is fully visible and the visibility of the

max. cap segment

max. side segment
before arrow optimization

contact-based
arrows

non-contact
arrows

side arrow

x

y

z

r

θ

x

y

z

r
θ

cap arrow

x

z

y
translational
arrow

d

Figure 10: (Left) Translational, cap and side arrows. Arrows are
first added based on the interaction graph edges, and then to the
moving parts without (sufficient) arrow assignment. The initial ar-
row placement can suffer from occlusion (right inset), which is fixed
using a refinement step (center).

(a)
Hammer

(b)
Drill

(c)
Chain driver

Figure 11: Motion arrow results. To convey how parts move,
our system automatically computes motion arrows from the user-
specified viewpoint. Here, we manually specified the lever in the
hammer model (a) and the belt in the chain driver model (c); our
system automatically identifies the types of all the other parts.

arrow crosses a prescribed threshold (50% in our examples). Cap
arrows viewed at oblique angles can be difficult to interpret. In such
cases (angles greater than 70 degrees in our system), we switch cap
arrows to side arrows, and locally adjust their parameters for better
visibility.

6.2 Highlighting the Causal Chain

To emphasize the causal chain of actions, our system generates a
sequence of frames that highlights the propagation of motions and
interactions from the driver throughout the rest of the assembly.
Starting from the root of the interaction graph, we perform a breadth
first traversal. At each traversal step, we compute a set of nodes S
that includes the frontier of newly visited nodes, as well as any
previously visited nodes that are in contact with this frontier. We
then generate a frame that highlights S by rendering all other parts
in a desaturated manner. To emphasize the motion of highlighted
parts, each frame includes any non-contact arrow whose parent part
is highlighted, as well as any contact-based arrow whose two as-
sociated parts are both highlighted. If a highlighted part only has
contact arrows and none of them are included based on this rule,
we add the part’s longest contact arrow to the frame to ensure that
every highlighted part has at least one arrow. In addition, arrows as-
sociated with previously visited parts are rendered in a desaturated
manner. For animated visualizations, we allow the user to interac-
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Figure 12: Keyframes for depicting periodic motion of a piston-engine. Because of symmetry across parts and across motion (periodic),
snapshot times are decided based on the positional extremes of the piston tops.

tively step through the causal chain while the animation plays; at
each step, we highlight parts and arrows as described above.

6.3 Highlighting Important Key Frames of Motion

As explained in Section 3, some assemblies contain parts that move
in complex ways (e.g., the direction of motion changes periodi-
cally). Thus, static illustrations often include key frames that help
clarify such motions. We automatically compute key frames of mo-
tion by examining each translational part in the model; if the part
changes direction, we add key frames at the critical times when
the part is at its extremal positions. However, since the instanta-
neous direction of motion for a part is undefined exactly at these
critical times, we canonically freeze time δ t after the critical time
instances to determine which direction the part is moving in (see
Figure 12). Additionally, for each part, we also add middle frames
between extrema-based keyframes to help the viewer easily estab-
lish correspondence between moving parts (see F05 model example
in the accompanying video). However, if such frames already exist
as extrema-based keyframes of other parts, we do not add the addi-
tional frames, e.g., in the piston-engine example (see Figure 12).

Our system can also generate a single frame sequence that high-
lights both the causal chain and important key frames of motion. As
we traverse the interaction graph to construct the causal chain frame
sequence, we check whether any newly highlighted part exhibits
complex motion. If so, we insert key frames to convey the motion
of the part and then continue traversing the graph (see Figure 14c).

6.4 Exploded views

In some cases, occlusions between parts in the assembly make it
difficult to see motion arrows and internal parts. To reduce occlu-
sions, our system generates exploded views that separate portions
of the assembly (see Figure 13). Typical exploded views separate all
touching parts from one another to ensure that each part is visually
isolated. However, using this approach in how things work illustra-
tions can make it difficult for viewers to see which parts interact
and how they move in relation to each other.

To address this problem, we only separate parts that are connected
via a coaxial junction; since such parts move rigidly together (i.e.,
they rotate in the same direction around the same axis), we believe it
is easier for viewers to understand their relative motion even when
they are separated from each other. To implement this approach, our
system first analyzes the interaction graph and cuts coaxial edges.
The connected components of the resulting graph correspond to
sub-assemblies that can be separated from each other. We use the
technique of Li et al. [2008] to compute explosion directions and
distances for these sub-assemblies.

7 Results

We used our system to generate both static and animated how things
work visualizations for ten different input models, each of which
contains from 7 to 27 parts (see Table 1). The models come from

a variety of sources; for details, please refer to the Acknowledge-
ments section. Figures 1, 11–14 show static illustrations of all ten
models. Other than specifying the driver part and its direction of
motion, no additional user assistance was required to compute the
interaction graph for seven of the models. For the drum, hammer
and chain driver models, we manually specified lever, cam and
chain parts, respectively. In all of our results, we color the driver
blue, fixed parts dark grey, and all other parts light grey. We render
translation arrows in green, and side and cap arrows in red.

Our results demonstrate how the visual techniques described in Sec-
tion 3 help convey the causal chain of motions and interactions
that characterize the operation of mechanical assemblies. For ex-
ample, the arrows in Figure 14a not only indicate the direction
of rotation for each gear, their placement near contact points also
emphasizes the interactions between parts. The frame sequence in
Figure 14b shows how the assembly transforms the rotation of the
driving handle through a variety of gear configurations, while the
sequence in Figure 14c conveys both the causal chain of interactions
(frames 1–3) as well as the back-and-forth motion of the horizontal
rack (frames 3–6) as it engages alternately with the two circular
gears. Finally, our animated results (see video) show how sequential

(a)
Planetary gearbox

w/ �xed outer rings

(b)
Planetary gearbox
w/ free outer rings

Figure 13: Exploded view results. Our system automatically gener-
ates exploded views that separate the assembly at co-axial junctions
to reduce occlusions. These two illustrations show two different
configurations for the planetary gearbox: one with fixed outer rings
(a), and one with free outer rings (b). The driver part is shown in
blue, and fixed parts are shown in dark grey.
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highlighting of parts along the causal chain can help convey how
motions and interactions propagate from the driver throughout the
assembly while the animation plays.

model tris. # parts # loops R / T / H time(sec) # arrows time(sec)

gears 23k 8 125 8 / - / - 0.44 12 0.96
F15 92k 19 126 9 / - / 1 1.65 11 1.10
planetary gearbox 49k 13 110 13 / - / - 1.42 28 1.85
Macaulay gears 32k 8 40 6 / 1 / 1 0.52 10 0.95
Leonardo’s drum 26k 27 442 12 / - / - 0.99 22 1.00
Leonardo’s hammer 3k 27 39 1 / - / - 0.16 6 0.31
piston-engine 18k 14 145 4 / - / - 0.67 9 0.06
F05 60k 9 30 2 / 1 / - 0.91 6 0.64
chain driver 61k 15 116 11 / 1 / - 1.96 14 0.93
hand drill 44k 7 51 4 / - / - 0.67 7 0.26

Table 1: Performance statistics along with detected symmetry types
of the parts, i.e., rotational (R), translational (T), and helical (H).

8 Conclusions and future work

In this work, we have presented an automated approach for gener-
ating how things work visualizations from 3D CAD models. Our
results demonstrate that combining shape analysis techniques with
visualization algorithms can produce effective depictions for a vari-
ety of mechanical assemblies. Thus, we believe our work has useful
applications for the creation of both static and animated visual-
izations in technical documentation and educational materials. To
conclude, we present several areas of future work:

Automating more parts and configurations. The rules that we
use in our analysis technique to identify different types of joint con-
figurations handle a range of common assembly types. However,
there are some parts and configurations that we cannot automati-
cally recognize (e.g., the lever and belt configurations in Figure 11).
New shape analysis methods may be necessary to automatically
handle such parts.

Handling more complex models. We have tested our approach
on several input assemblies of moderate complexity. Visualizing
significantly more complex models (with hundreds or even thou-
sands of parts) introduces additional challenges, including the pos-
sibility of excess visual clutter and large numbers of occluded parts.
Although exploded views can help reduce occlusions, our approach
of only separating parts that move together rigidly may be overly
restrictive for assemblies with densely packed parts.

Handling fluids. While the parts in most mechanical assemblies
interact directly with one another via contact relationships, some
assemblies use fluid interactions to transform a driving force into
movement (e.g., pumps, hydraulic machines). One approach for
supporting such assemblies would be to incorporate a fluid simu-
lation into our analysis technique.

Visualizing forces. In addition to visualizing motion, some how
things work illustrations also depict the direction and magnitude
of physical forces, such as friction, torque and pressure, that act
on various parts within the assembly. Automatically detecting and
visualizing such forces is an open direction for future work.
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Figure 14: Illustration results. We used our system to generate these how things work illustrations from 3D input models. For each model, we
specified the driver part and its direction of motion. In addition, we manually specified the levers in the drum (c). From this input, our system
automatically computes the motions and interactions of all assembly parts and generates motion arrows and frame sequences. We created
the zoomed-in insets by hand.
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